Nature-inspired Metaheuristic Algorithms

Nature-inspired Metaheuristic Algorithms

4.11 - 1251 ratings - Source



Modern metaheuristic algorithms such as bee algorithms and harmony search start to demonstrate their power in dealing with tough optimization problems and even NP-hard problems. This book reviews and introduces the state-of-the-art nature-inspired metaheuristic algorithms in optimization, including genetic algorithms, bee algorithms, particle swarm optimization, simulated annealing, ant colony optimization, harmony search, and firefly algorithms. We also briefly introduce the photosynthetic algorithm, the enzyme algorithm, and Tabu search. Worked examples with implementation have been used to show how each algorithm works. This book is thus an ideal textbook for an undergraduate and/or graduate course. As some of the algorithms such as the harmony search and firefly algorithms are at the forefront of current research, this book can also serve as a reference book for researchers.This book reviews and introduces the state-of-the-art nature-inspired metaheuristic algorithms in optimization, including genetic algorithms, bee algorithms, particle swarm optimization, simulated annealing, ant colony optimization, harmony ...


Title:Nature-inspired Metaheuristic Algorithms
Author: Xin-She Yang
Publisher:Luniver Press - 2010
ISBN-13:

You must register with us as either a Registered User before you can Download this Book. You'll be greeted by a simple sign-up page.

Once you have finished the sign-up process, you will be redirected to your download Book page.

How it works:
  • 1. Register a free 1 month Trial Account.
  • 2. Download as many books as you like (Personal use)
  • 3. Cancel the membership at any time if not satisfied.


Click button below to register and download Ebook
Privacy Policy | Contact | DMCA